臉部辨識/反詐騙/低電力喚醒三合一 人臉驗證準確率大增 - 技術頻道 - 新電子科技雜誌 Micro-electronics


熱門關鍵字:USB PD | 自駕車 | 藍牙5 | NB-IoT | AI

訂閱電子報

立刻輸入Email,獲取最新的資訊:


收藏功能:
分享報新知:
其他功能:

臉部辨識/反詐騙/低電力喚醒三合一 人臉驗證準確率大增

文‧Arm 發布日期:2019/01/10 關鍵字:人臉辨識AI機器學習Always-on

人臉驗證一直被認為是電腦視覺領域中最大的挑戰之一,為此,IP設計業者便致力設計高準確度的人臉驗證系統;透過機器學習與深度學習技術,人臉驗證系統的準確度高達98.36%,有望解決利用照片、影片進行詐騙等安全疑慮。

長久以來,人臉驗證一直被認為是電腦視覺領域中最大的挑戰之一,但現已設計出一套準確度高達98.36%的人臉驗證系統,而且是此一概念的即時驗證。本系統選擇的管線設計結合典型與現代的機器學習(深度學習)技巧,支援包括多用戶驗證以及反詐騙階段等關鍵功能,以解決利用照片或影片進行詐騙的關鍵安全議題。本文的目標是針對使用機器學習所產生的問題,以及終端用戶使用平台遭遇的問題,進一步瞭解打造更完整解決方案的程序。也因此,此一使用案例主要在探討如何在多IP上部署機器學習,以提升使用者體驗。為了達成概念驗證,本文使用Arm NN軟體以及已生產的硬體IP,展示一套Always-on的人臉解鎖(人臉驗證)系統。

資訊流的來源,來自耗電量非常低的低解析度照相機檢測到的場景顯著變化,並對隨後階段進行閘控,以保持低電力使用量。當場景變化達到預先定義的水準時,高解析度的RGBD相機會啟動,並且開始針對每一幀(Frame)進行掃瞄,以找出人臉(圖1)。

》想看更多內容?快來【免費加入會員】【登入會員】,享受更多閱讀文章的權限喔!
研討會專區
主題式電子報
熱門文章