半導體業長期以來是將記憶體與處理器分別設計配置,即便是晶片內的嵌入式記憶體,其電路區塊也是與處理單元各自分立,並讓兩區塊間透過匯流排傳遞存取資訊。
而所謂的記憶體內處理器(Processor In Memory, PIM)(圖1),或稱記憶體鄰近處理器(Processor Near Memory, PNM)、記憶體內運算(In-Memory Compute, IMC)等,則是在晶片電路設計時即以記憶體的矩陣記憶電路為基礎,再行加搭起運算電路,使記憶與運算電路幾乎融為一體。
PIM作法過去曾在上世紀90年代倡議過但未能成為潮流,但隨著人工智慧(AI)、機器學習(ML)、深度學習(DL)的興起,產業界重新評估與發展PIM技術及晶片,原因主要在於現行主流技術在運算效能提升上漸遭遇多項瓶頸,難以因應日益增高的深度學習運算量。