製程升級/專用化/改架構 AI訓練/推論晶片算力攀升 - 市場話題 - 新電子科技雜誌 Micro-electronics


熱門關鍵字:電源模組 | SiC | 機器視覺 | GaN | 5G

訂閱電子報

立刻輸入Email,獲取最新的資訊:


收藏功能:
分享報新知:
其他功能:

製程升級/專用化/改架構 AI訓練/推論晶片算力攀升

文‧廖專崇 發布日期:2020/06/01 關鍵字:AI 算力 TOPS FLOPS INT8 馮紐曼架構 Von Neumann Architecture 邊緣推論 In Memory Computing

人工智慧晶片的算力逐漸成為效能的指標,其中雲端(Cloud)、邊緣(Edge)、訓練(Training)及推論(Inference),更朝向專用與分流趨勢發展。

人工智慧(AI)在經過幾年熱潮後逐步落地,過去強調AI準確性的做法,轉變為追求效率,而「算力」似乎成為AI晶片效能最容易理解的指標,TOPS(Tera Operations Per Second)或TOPS/w慢慢成為產業共識,儘管構成算力的條件很多,AI執行效能也非僅從算力就能完全判定。進入所謂AI 3.0的時代,資料運算複雜性持續提升,但希望在有限的資源下達成最佳化管理的目標,算力就是系統效能最初步/簡易的判別指標。

另外,AI針對不同場景與任務,可以分為雲端(Cloud)與邊緣(Edge)、訓練(Training)與推論(Inference),為了提升效能表現,這四類工作走向專用與分流,處理雲端訓練的晶片依然強調運算能力,希望能以資料處理量為重點,然而在另一端的邊緣推論則可犧牲部分精度,以求在最低的功耗下獲得可接受的結果,在強調運算與講求耗電的兩種需求就像是光譜的兩端,加上雲端推論與邊緣訓練,為AI晶片畫出四個明確的專用分流路線。

》想看更多內容?快來【免費加入會員】【登入會員】,享受更多閱讀文章的權限喔!
研討會專區
主題式電子報
熱門文章