蘋果副總Johny Srouji獲頒2025年imec終身創新獎

比利時微電子研究中心(imec)宣布,蘋果硬體技術資深副總Johny Srouji將獲頒2025年imec終身創新獎。該獎項認可Srouji在開發蘋果晶片時運用他的領導才能,在塑造蘋果的技術發展藍圖方面發揮的關鍵作用。他不僅重新定義蘋果的產品,也深深影響著更廣泛的半導體生態系,促進晶片技術的進步,把功能、體驗和人工智慧(AI)推升到全新高度。Johny...
2025 年 04 月 16 日

先進SoC面臨散熱挑戰 熱學分析突顯STCO重要性(1)

持續微縮導致功率密度增加,還帶來干擾的副作用:熱能。高溫會影響系統單晶片(SoC)性能的多種面向,包含處理速度、功率效率、可靠度、資料傳輸量和訊號完整性。為了在未來節點維持更緊湊、更高效能晶片的最佳性能和使用壽命,有效的散熱管理變得更加關鍵。...
2025 年 04 月 11 日

先進SoC面臨散熱挑戰 熱學分析突顯STCO重要性(2)

持續微縮導致功率密度增加,還帶來干擾的副作用:熱能。高溫會影響系統單晶片(SoC)性能的多種面向,包含處理速度、功率效率、可靠度、資料傳輸量和訊號完整性。為了在未來節點維持更緊湊、更高效能晶片的最佳性能和使用壽命,有效的散熱管理變得更加關鍵。...
2025 年 04 月 11 日

imec成功研發分散式雷達 空間感測精度更上一層樓

比利時微電子研究中心(imec)開創全球首例,成功建立及測試一套由光子電路驅動的分碼多工(CDM)調頻連續波(FMCW) 144GHz分散式雷達概念驗證系統,確保傳輸同調啁啾訊號(Chirp)到遠端雷達單元。imec的概念驗證展示成功的測距量測結果,可望對多節點雷達系統的發展帶來重大突破。與單節點雷達相比,多節點雷達具備更優異的角度解析度,能帶來更精準的感測結果。展望未來,這項技術可望推動新一代駕駛輔助系統(ADAS)和其他高精度感測應用的發展變革。...
2025 年 04 月 09 日

從2D FET到2D CFET 製程微縮帶動2D材料需求(1)

為延續摩爾定律(Moore’s Law),半導體製程微縮的技術創新方向不斷轉變。採用2D結構的互補式場效電晶體(CFET),將是下一個推動產業變革的技術。 近二十年來,受摩爾定律啟發的純電路微縮,已不再是預測CMOS技術節點演變的唯一指標。第一個徵兆出現在2005年左右,當時Dennard縮放已經開始放慢。(編按:Dennard定律是指在固定功耗下,製程節點升級可帶來的性能提升幅度)。...
2025 年 03 月 28 日

從2D FET到2D CFET 製程微縮帶動2D材料需求(2)

為延續摩爾定律(Moore’s Law),半導體製程微縮的技術創新方向不斷轉變。採用2D結構的互補式場效電晶體(CFET),將是下一個推動產業變革的技術。 引進較低性能的元件—imec採取的途徑...
2025 年 03 月 28 日

推動半導體與超導量子位元微縮 量子運算從實驗室走向晶圓廠(1)

量子電腦很可能需要數百萬個量子位元(Qubit),才能準確執行其所承諾的轉型計算(Transformational Calculations)。不過,擴增量子位元的數量仍是一大障礙。先進CMOS製程可以達到晶圓級均勻度,且生產良率高,但由於不同的設計和操作條件,所以無法直接用來生產量子位元結構。imec研究人員近期在imec自家先進試驗製程廠房內的一條客製化12吋晶圓產線,展示矽量子點自旋量子與超導量子位元的成功整合。...
2025 年 02 月 27 日

推動半導體與超導量子位元微縮 量子運算從實驗室走向晶圓廠(2)

量子電腦很可能需要數百萬個量子位元(Qubit),才能準確執行其所承諾的轉型計算(Transformational Calculations)。不過,擴增量子位元的數量仍是一大障礙。先進CMOS製程可以達到晶圓級均勻度,且生產良率高,但由於不同的設計和操作條件,所以無法直接用來生產量子位元結構。imec研究人員近期在imec自家先進試驗製程廠房內的一條客製化12吋晶圓產線,展示矽量子點自旋量子與超導量子位元的成功整合。...
2025 年 02 月 27 日

imec回顧2024年 先進製程/量子運算/後5G取得重要突破

創立40年來,比利時微電子研究中心(imec)已經從一間由70人組成的大學實驗室,擴展為奈米電子研發與數位技術領域的國際領先研究中心。目前聘用了超過5500名員工。作為國際要角,全球各地皆有代表。透過其研發計畫,imec集結了逾600位業界夥伴,帶領橫跨世界各地的半導體價值鏈科技公司共同驅動微晶片與其應用的創新,例如健康、汽車、人工智慧(AI)和製造等。...
2025 年 02 月 26 日

在SoC中實現異質整合 CMOS 2.0開闢新道路(1)

數十年來,為CPU與GPU等高效能運算(HPC)所開發的單片式系統單晶片(SoC)之所以能有進展,全有賴於互補式金氧半導體(CMOS)成功實現微縮。CMOS為SoC開發人員提供了一套能讓他們在同個單一基板整合越來越多功能的技術平台。就算是朝向多核心結構發展,結果顯示,比起在不同晶片之間傳輸資料,把各個功能整合在同一個基板上能提供更高的效率。...
2024 年 12 月 18 日

在SoC中實現異質整合 CMOS 2.0開闢新道路(2)

數十年來,為CPU與GPU等高效能運算(HPC)所開發的單片式系統單晶片(SoC)之所以能有進展,全有賴於互補式金氧半導體(CMOS)成功實現微縮。CMOS為SoC開發人員提供了一套能讓他們在同個單一基板整合越來越多功能的技術平台。就算是朝向多核心結構發展,結果顯示,比起在不同晶片之間傳輸資料,把各個功能整合在同一個基板上能提供更高的效率。...
2024 年 12 月 18 日

挑戰七埃米製程 imec提出雙列CFET結構

在2024年IEEE國際電子會議(IEDM)期間,比利時微電子研究中心(imec)發表一款基於互補式場效電晶體(CFET)的全新標準單元結構,內含兩列CFET元件,兩者之間共用一層訊號布線牆。這種雙列CFET架構的主要好處在於簡化製程和大幅減少邏輯元件和靜態隨機存取記憶體(SRAM)的面積。根據imec進行的設計技術協同最佳化(DTCO)研究。與傳統的單列CFET相比,此新架構能讓標準單元高度從4軌降到3.5軌。...
2024 年 12 月 09 日