聯網/供電一兼二顧 PoE設計降耗損迎高功率

作者: Riley Beck
2020 年 06 月 22 日

乙太網路供電(PoE)經現有乙太網路基礎設施提供靈活、可靠且安全的電源來解決這些問題,且自從2003年由IEEE首次發布以來已取得飛躍性的發展。最新的IEEE 802.3bt批准則使其成為市場上的佼佼者,透過Cat5/Cat6電纜提供10G-BASE-T和60W至90W的功率。

電源功率不斷提升 推進聯網設備規格更新

最初,Type1電源設備或PSE只能提供最高15.4W的功率,Type2增加一倍達到30W。2018年9月發布的Type3和Type4的功率分別達到60W和90W,打開啟用聯網設備世界的大門,這些設備包括無線和蜂巢式基地台、平移傾斜變焦(PZT)和監視器、電視、互動式顯示器和資訊站。單根低壓電纜同時配以專用高速通訊,使布線更少,是物聯網(IoT)和工業物聯網(IIoT)的智慧樓宇維護和安裝的理想選擇。

乙太網路供電是有線通訊和供電系統,使用現有的乙太網路為端點設備供電。在這些系統中,電源設備(PSE)經由八根電線提供電源,這些電線布置成四對雙絞線(Cat5/Cat5e/Cat6/Cat6a)電纜,採用RJ45型連接器連接到受電設備(PD)。PSE向端點提供高達57V的電壓。由於該電壓小於60V,因此符合安全特低電壓指令(SELV),使電氣安全並且不需要有資質的電工或掩埋電纜,進而簡化了安裝和維護流程。該標準將每個埠的功率限制為90W,成為乙太網路電纜傳輸的最大功率。

該標準最初定於2017年發布,在正式發布之前不斷更新,以確保與以前的版本相容。PoE最新規範的更新IEEE 802.3bt導入Type3和Type4電源設備和受電設備。為了提供更高的電流,新標準允許同時使用兩種功率模式(模式A和模式B),通常稱為四對或4PPOE,經由四對而不是Type1和Type2供電。添加的三類,即五至八類,具有改進的相互識別過程和自動分類功能。此更新還帶來更低的待機功耗,並支援10G-BASE-T和PoE。

PoE設計確保設備電源要素

設計受電設備時,要考慮許多功能,包括運作模式、PD檢測和分類。為了避免損壞非PoE的設備,PSE必須在提供電源之前檢測是否已連接受電設備。使用有效特徵檢測PD模式,並在受電設備中使用25kΩ電阻去實施。當PSE提供兩個連續的電壓(V1=2.7V和V2=10.1V)用於電阻檢測時,它記錄電流值,確定PD的存在,然後啟動為設備供電。圖1為啟動期間的電阻檢測階段。

圖1 啟動階段的波形

在分類階段,確定受電設備的最大功率要求。連接到PD的PoE控制器的另一個電阻指示功率範圍。表1顯示單特徵PD的不同類別及其最大平均功率。類別與Type不同,它涉及所連接設備的特定功率。在IEEE 802.3af/at(Type1和Type2設備)中,使用單特徵PD。IEEE 802.3bt添加雙特徵PD,其中每種模式或替代方案(A和B)使用單獨的輸入橋式整流器和PD控制器。

圖3 四對PoE功率傳輸

可選的分類擴展是自動分類。在自動分類中,PSE會測量特定時間段內連接的PD的功耗,進而可以確定PD所需的最大功率。自動分類絕不會使用雙特徵PD來實現。表1及列出新類別和類型在受電設備接收到的功率以及每種類型支援的模式。一旦檢測到受電設備並確定類別,就必須保持電源特徵。對於Type1和Type2設備,所需的最小功率特徵為10mA,工作週期為20%。為使埠保持啟動狀態,浪費至少2.31mA的平均電流。50V時能夠達到115mW,在更大的部署中很快地相加。對於Type3和Type4供電設備,工作週期降低到1.875%,這使得每個設備的功率小於10mW,進而使待機功耗降低90%。在網路上存在大量設備的聯網照明應用中,嚴格要求MPS。即使對無線回傳、Wi-Fi接入點和安防攝影機等始終聯網的設備來說,它雖非關鍵但仍是必需。

三種PoE模式實現穩定電壓輸出

功率分配分為三種模式:模式A、模式B(也稱為替代A和替代B)和四對。對於10BASE-T/100BASE-TX,在模式A下,電源與資料對1-2和3-6同時傳送。模式B由備用對4-5和7-8供電。在1000BASE-T應用(四對)中,模式A和模式B的電力也同時由四對傳輸。使用標準乙太網路變壓器的中心抽頭提取共模電壓,然後DC-DC轉換器為系統提供穩定的輸出電壓。圖2為Type1和Type2應用的模式A和模式B供電,圖3則是Type3和Type4中4對模式的接線。

圖2 模式A和模式B PoE功率傳輸

設計使用PoE的設備時,須考慮互連電纜。乙太網路的電纜長度最大為100m,具有直流電阻,同時會降低電壓並因發熱而耗散功率。5類或Cat5電纜是乙太網網路中使用的雙絞線電纜,用於在PoE網路中供電,支援高達100MHz,適用於10/100/1000BASE-T。類別6或Cat6是對Cat5電纜的改進,並支援高達500MHz,適用於10GBASE-T的乙太網路速度。

一根100m的Cat5電纜直流電阻為12.5Ω;其中Cat6的電纜每100m的直流電阻為7Ω。傳輸損耗隨著差分對中電流的增加而增加。在25W PD的典型輸入電壓為50V的情況下,電流為0.5A。這在Cat5中的傳輸損耗總計為2.5W,在Cat6中的傳輸損耗總計為1.75W,這些損耗因發熱而耗散。對於90W的設備,此傳輸損耗在四對之間共用,每對為930mA,PSE至少為52V。在Cat5中為17.30W,而在Cat6中為2×6.05W,表示Cat5對於任何應用都足夠安全。

MOSFET加強封裝 解決高功率耗損 

安裝電纜時應仔細考慮布線,事先斟酌電纜長度和設備電源之間的平衡,以提高效能和降低電纜損壞的風險。受電設備控制器進行轉換,並透過附加的DC-DC轉換器調節PD側的輸入電壓。二極體橋是用於典型PoE設備的一種低成本方案,可以滿足低功率設備所需,但是隨著功率的增加,此方案開始出現問題。在25.5W,最小42.5V的情況下,估計0.6A電流流經二極體橋。每個二極體的正向電壓為0.7V,每個二極體的功率損耗為420mW。在90W的系統之中,現在的電流為3.7A,每個二極體的功率損耗為2.59W。

MOSFET方法比常規二極體橋改善導通損耗和效能。例如安森美半導體(On Semiconductor)的第一代GreenBridge系列整合雙P溝道和雙N溝道MOSFET(FDMQ8203)系列提供緊湊且熱增強的表面貼裝封裝,可以有效解決此問題(圖4)。導通損耗與MOSFET的RDS(ON)值有關。對於25W系統,在N溝道和P溝道MOSFET的RDS(ON)分別為110mΩ和190mΩ的情況下,計算出耗散功率為115mW。這是二極體電橋功耗的四分之一。在90W的示例中,3.7A的導通損耗為354mW,低至二極體方案的13%。節能的幅度看似微小,但是在使用數百個PoE感測器的大樓管理系統中,可以見到顯著的差異(圖5)。

圖4 GreenBridge方案對比二極體橋
圖5 GreenBridge FDMQ8203 Quad MOSFET方案

第二代QuadMOSFET方案(FDMQ8025A)則提供更高的額定功率、高效能的橋式整流器以及必要的門極驅動器,採用與第一代相同的小MPL 4.5×5mm封裝,和更小的RDS(ON),N通道MOSFET僅35mΩ,P通道MOSFET僅76mΩ。

圖6 NCP1095GEVB/NCP1096GEVB評估板

安森美半導體還提供PoE-PD介面控制器,多種設備都可成為相容802.3af/at和-3bt的受電設備。NCP1095和NCP1096介面控制器含在PoE系統中運作所需的所有功能,如浪湧階段的檢測、分類、自動分類和電流限制。兩個控制器採用內/外部傳輸電晶體,支援高達90W的功率,還能指示何時可以實施簡短的維持電源特徵,而附加的輔助電源檢測支援由PoE或牆式插頭供電。此外,NCP1095GEVB和NCP1096GEVB評估板使設計工程師可以快速評估兩個控制器的運作,然後實施有助於設計過程的物理設計,包括GreenBridge2橋式整流器、RJ45連接器和局域網路(LAN)變壓器。

PoE-PD整合促乙太網路供電具競爭力

IEEE 802.3bt乙太網跨供電標準為更多耗電設備打開市場,功耗的增加帶來新的挑戰,若是採用安森美半導體的PoE-PD方案來解決,該方案整合GreenBridge橋式整流器Quad MOSFET和易於實施的PoE-PD控制器。可有效降低新產品的風險並縮短上市時間,使乙太網路供電成為物聯網領域的重要市場競爭優勢。

(本文作者為安森美行銷經理)

 

》想看更多內容?快來【免費加入會員】【登入會員】,享受更多閱讀文章的權限喔!
標籤
相關文章

MCU/WiFi模組共織救生網 火災煙聯網整合偵測與引導

2020 年 04 月 16 日

搞懂省電機制細節  LPWAN技術選擇不走冤枉路

2016 年 10 月 13 日

車聯網通訊技術添新面孔 LTE進軍V2X應用

2017 年 09 月 11 日

SDR靈活性更高 sub-GHz滿足LPWAN需求

2019 年 10 月 06 日

IIoT故障預診斷 提升產能/設備稼動率

2019 年 07 月 22 日

整合感測/通訊量測體重 計重檯秤系統成就智慧養殖

2020 年 09 月 21 日
前一篇
安提國際推新高效智慧邊緣運算系統
下一篇
2020年Q2伺服器訂單回升 資料中心需求帶動出貨