AI人機協作降半導體製程開發成本(3)

2023 年 10 月 27 日
製造半導體晶片的瓶頸之一,是開發電晶體和記憶體儲存單元的化學電漿製程所需的成本越來越高。這些製程仍然是由訓練有素的工程師以人工方式進行開發,透過尋找機台上的參數組合,以便在矽晶圓上產出可接受的結果。 (承前文)人類基準測試的目標成本的基準是由人類玩家決定的。志願者包括六名擁有物理科學博士學位的專業製程工程師。工程師們根據他們之前對製程趨勢和電漿參數依賴關係的瞭解,利用機械性假設來設計其實驗。作為參考,三名無相關製程經驗的人員也參與其中。參加這場比賽的電腦演算法為貝氏最佳化演算法,這是一種適合於昂貴黑盒函數的常用機器學習方法。...
》想看更多內容?快來【免費加入會員】【登入會員】,享受更多閱讀文章的權限喔!
標籤
相關文章

AI人機協作降半導體製程開發成本(1)

2023 年 09 月 04 日

AI人機協作降半導體製程開發成本(2)

2023 年 10 月 02 日

AI人機協作降半導體製程開發成本(4)

2023 年 10 月 27 日

雲端/AI應用頻寬需求孔急 矽光子技術將成重中之重(2)

2023 年 06 月 29 日

智慧化浪潮驅動高效工業儲存(1)

2023 年 07 月 04 日

CNN網路建模精確特徵萃取

2023 年 09 月 06 日
前一篇
AI人機協作降半導體製程開發成本(4)
下一篇
Goolge Med-PaLM 2展開實測 生成式AI進入醫療場域(2)

登入會員

本站程式甫於2022.5.5更新,
所有舊會員必須先點擊:
忘記密碼 進行密碼確認後,才能正常登入。

上述動作目的在於確保帳號安全性,造成不便懇請見諒。如您已重設過密碼,請忽略此訊息。