疫情推波AI應用 診斷系統/智慧輔具助醫療照護 - 市場話題 - 新電子科技雜誌 Micro-electronics


熱門關鍵字:電源模組 | SiC | 機器視覺 | GaN | 5G

訂閱電子報

立刻輸入Email,獲取最新的資訊:


收藏功能:
分享報新知:
其他功能:

疫情推波AI應用 診斷系統/智慧輔具助醫療照護

文‧吳心予 發布日期:2020/07/23 關鍵字:AI人工智慧診療系統智慧醫療智慧輔具UI資策會MIC

人工智慧的技術發展邁向普及,在疫情爆發後應用於藥物研發與病毒研究,影像辨識則自2012年起大量運用在診斷及手術輔助場景。另一方面,結合AR的人機介面往智慧輔具發展。醫療照護需求搭配台灣AI技術的破壞式創新,台廠有望搶得市場先機。

2016年圍棋軟體Alpha Go問世後,人工智慧(AI)技術成為熱門話題。直至2020年,人工智慧的技術發展邁向普及,廣泛應用於各領域之外,機器學習(Machine Learning, ML)、深度學習(Deep Learning)、邊緣運算(Edge Computing)的技術都更臻成熟。今年疫情掀起智慧醫療討論風潮,將AI用於藥物研發與病毒研究,同時回顧自2012年AlexNet架構問世後,影像辨識大量運用在診斷及手術輔助場景。另一方面,結合AR的人機介面往智慧輔具方面發展,透過生物感測輔助身障人士擁有更便利的生活。種種醫療照護領域應用需求,搭配台灣AI技術的破壞式創新,使得台廠有望在市場中搶得商機。

資策會產業情報研究所(MIC)資深產業分析師兼組長韓揚銘說明,MIC統計在2016年Alpha Go出現以後的深度學習框架更新狀況,發現2018年度各框架的更新總次數最高,總共達31次。框架更新的過程中,可觀察到有兩大趨勢,一是很多公司提供深度學習的框架加速AI模型的開發,二則是許多公司討論深度增強式學習框架應用的可能性。市場上的深度學習框架開發仍處於百家爭鳴階段,大廠之間不斷競爭,希望成為未來應用主流。

》想看更多內容?快來【免費加入會員】【登入會員】,享受更多閱讀文章的權限喔!
研討會專區
熱門文章